Luminance-Chrominance linear prediction models for color textures: An application to satellite image segmentation

نویسنده

  • Imtnan-Ul-Haque Qazi
چکیده

This thesis details the conception, development and analysis of a novel color texture descriptor based on the luminance-chrominance complex linear prediction models for perceptual color spaces. In this approach, two dimensional complex multichannel versions of both causal and non-causal models are developed and used to perform the simultaneous parametric power spectrum estimation of the luminance and the combined chrominance channels of the proposed two channel complex color image. The accuracy and precision of these spectral estimates along with the spectral distance measures ensure the robustness and pertinence of the approach for color texture classification. A luminance-chrominance spectral interference based quantitative measure for the color space comparison is also introduced. The experimental results for different test data sets, in IHLS and L*a*b* color spaces are presented and discussed. These results have shown that the chrominance structure information of the color textured images could get better characterized in L*a*b* color space and hence could provide the better color texture classification results. A Bayesian framework based on the multichannel linear prediction error is also developed for the segmentation of textured color images. The main contribution of this segmentation methodology resides in the robust parametric approximations proposed for the multichannel linear prediction error distribution. These comprised of a unimodal approximation based on the Wishart distribution and a multimodal approximation based on the multivariate Gaussian mixture models. Another novelty of this approach is the fusion of a region size energy term with the conventional Potts model energy to develop a Gibbs random field model of the class label field. This improved label field model is used for the spatial regularization of the initial class label estimates computed through the proposed parametric priors. Experimental results for the segmentation of synthetic color textures as well as high resolution QuickBird and IKONOS satellite images validate the application of this approach for highly textured images. Advantages of using these priors instead of classical Gaussian approximation and improved label field model are evident from these results. They also verify that the L*a*b* color space exhibits better performance among the used color spaces, indicating its significance for the characterization of complex textures through this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postprocessing of decoded color images by adaptive linear filtering

This paper presents an image adaptive linear filtering method for the reconstruction of the RGB (red, blue, green) color coordinates of a pixel from the lossy compressed luminance/chrominance color coordinates. In the absence of quantization noise, the RGB coordinates of a pixel can be perfectly reconstructed by employing a standard, fixed filter whose support includes only the luminance/chromi...

متن کامل

An unsupervised color image segmentation algorithm for face detection applications

This paper presents an unsupervised color segmentation technique to divide skin detected pixels into a set of homogeneous regions which can be used in face detection applications or any other application which may require color segmentation. The algorithm is carried out in a two stage processing, where the chrominance and luminance informations are used consecutively. For each stage a novel alg...

متن کامل

The Influence of Luminance on Local Tone Mapping

We study the influence of the choice of color space for local tone mapping methods. Many local tone mapping methods do not perform well when applied independently to the three color channels of an RGB image. A common solution is to only treat the luminance channel. However, the question of which color space provides the most suitable luminance definition has not been addressed. The correlation ...

متن کامل

Skin Segmentation Using Different Integrated Color Model Approaches for Face Detection

This paper presents an efficient skin segmentation algorithm which depends on integration of different color models. Among different low level features such as edge, shape, color, texture; color processing is computationally fast and easy to implement. Color constancy is the ability of human vision system to resolve object colors in a scene independent of the illuminant. Skin color is one of th...

متن کامل

Image-adaptive Color Super-resolution

Image super-resolution is the problem of recovering a high resolution (hi-res) image from multiple low resolution (lo-res) acquisitions of a scene. The main focus and the most significant contributions of research in this area have been on the problem of super-resolving single channel (grayscale) images. Multi-channel (color) image super-resolution is often treated as an extension to grayscale ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010